Agendas for multi-agent learning
نویسنده
چکیده
Shoham et al. [1] identify several important agendas which can help direct research in multi-agent learning. We propose two additional agendas— called “modelling” and “design”—which cover the problems we need to consider before our agents can start learning. We then consider research goals for modelling, design, and learning, and identify the problem of finding learning algorithms that guarantee convergence to Pareto-dominant equilibria against a wide range of opponents. Finally, we conclude with an example: starting from an informally-specified multi-agent learning problem, we illustrate how one might formalize and solve it by stepping through the tasks of modelling, design, and learning. This report is an extended version of a paper which will appear in a special issue of Artificial Intelligence Journal [2]; in addition to the topics covered in that paper, this report contains several appendices providing extra details on various algorithms, definitions, and examples.
منابع مشابه
Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملIf multi-agent learning is the answer, what is the question?
The area of learning in multi-agent systems is today one of the most fertile grounds for interaction between game theory and artificial intelligence. We focus on the foundational questions in this interdisciplinary area, and identify several distinct agendas that ought to, we argue, be separated. The goal of this article is to start a discussion in the research community that will result in fir...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملVoltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems
This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artif. Intell.
دوره 171 شماره
صفحات -
تاریخ انتشار 2007